The association between obesity, cognitive decline and dementia in mid-life and late-life

Professor Kaarin Anstey
Centre for Research on Ageing, Health and Wellbeing

What is dementia?

Dementia is a **SYNDROME**, usually progressive and irreversible.

A syndrome is a pattern of symptoms that may be caused by many different illnesses.

The dementia syndrome has 3 key features:

1. Is acquired
2. Is persistent
3. Involves multiple impairments of intellectual functioning

Main causes of dementia in Australia:

Alzheimer’s disease, Vascular Dementia
Dementia is 2nd leading cause of disease burden
Prevalence to increase four-fold from 245,400 in 2009 to 1.13 million in 2050 (Access Economics, 2009)
By 2016, its disability burden will be greater than any disease in Australia
US estimates suggest 20% of adults over 70yrs suffer from significant cognitive impairment
Midlife Cardiovascular risk factors increase risk of late-life dementia in Alzheimer’s and Vascular dementia.
Background

- There is no cure for dementia so risk reduction is essential
- Internationally, obesity is increasing in young adults and middle-aged adults
- Complex associations between bodyweight, adiposity, BMI and cognition and dementia
- Evidence now strongly suggests links mid-life obesity to increased risk of late-life dementia
Bodyweight and dementia

- Excess weight → insulin resistance, hypertension and changes in coronary arteries leading to an increase in risk for cardiovascular disease
- Cardiovascular disease is a risk factor for dementia
- BUT body fat also contains leptin and estrogen which are potentially neuroprotective
- Some studies show high BMI increases risk of dementia
- Some studies show higher BMI in late life is protective against dementia
- Depends on age, distribution of body fat, body composition
Systematic review BMI & dementia - aims

- To synthesise all available high quality data on BMI and risk of dementia in late life
- To evaluate whether BMI in mid-life and BMI in late-life have similar risks for dementia
- To compare findings with other published reviews of BMI and dementia
- To draw inferences from the study for population health strategies to reduce dementia risk
Search Terms

Dementia and cognition terms included: Cognit*, Memory, Attention, Reaction time, Speed of processing, Processing speed, Crystallized ability, Crystallized intelligence, Fluid ability, Fluid intelligence, General mental ability, GMA, Intelligence, Executive function, Neuropsychological testing, Mini mental stat* exam* , MMSE, Dementia, Alzheimer (auto explode), Mild cognitive impairment, MCI.
Inclusion criteria

- **Quality had to be**: equal or better than the Oxford Centre for Evidence-Based Medicine Level of Evidence 1B
- **Studies design had to be**: prospective, longitudinal, population based studies with a minimum follow up period of one year.
- **Exposure**: BMI or waist circumference at baseline or during a follow-up period that preceded the final follow-up examination.
- **Outcome**: dementia (research criteria) or cognitive decline. Dementia categories were Alzheimer’s Disease, Vascular Dementia, Any Dementia.
Exclusion criteria

- Studies not screening for dementia at baseline
- Cross-sectional
- Experimental
- Used clinical sample or sample of relatives
- Low quality
- Not meeting inclusion criteria
Studies included

> 90,000 abstracts identified in search, 309 articles obtained after screening abstracts, 26 studies met criteria, 17 compatible for meta-analyses

Alzheimer's disease
- \(n = 15256 \) were assessed in mid-life
- \(n = 13166 \) were assessed in late-life

Vascular dementia
- \(n = 5299 \) were assessed in late life

Any dementia
- \(n = 20476 \) assessed in mid-life
- \(n = 12792 \) assessed in late-life
BMI categories

World Health Organization Categories for Body Mass Index

- Underweight < 18.5
- Normal weight $\geq 18.5 < 25$
- Overweight $\geq 25 < 30$
- Obese ≥ 30
Results: Low BMI in mid-life increases risk of Alzheimer's disease

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>log(Low weight) (SE)</th>
<th>95% CI</th>
<th>Weight</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitzpatrick</td>
<td>0.3852 (0.3788)</td>
<td></td>
<td>28.28</td>
<td>1.47 [0.70, 3.09]</td>
</tr>
<tr>
<td>Whitmer</td>
<td>0.0676 (0.3859)</td>
<td></td>
<td>27.25</td>
<td>1.07 [0.50, 2.28]</td>
</tr>
<tr>
<td>Beydoun</td>
<td>1.2325 (0.3021)</td>
<td></td>
<td>44.47</td>
<td>3.43 [1.90, 6.20]</td>
</tr>
</tbody>
</table>

Total (95% CI)
Test for heterogeneity: Chi^2 = 6.47, df = 2 (P = 0.04), I^2 = 69.1%
Test for overall effect: Z = 3.35 (P = 0.0008)
Results: Overweight BMI in midlife increases risk of AD and dementia

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>log(Overweight) (SE)</th>
<th>Overweight (fixed) 95% CI</th>
<th>Weight %</th>
<th>Overweight (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitzpatrick</td>
<td>0.0392 (0.1751)</td>
<td></td>
<td>14.63</td>
<td>1.04 [0.74, 1.47]</td>
</tr>
<tr>
<td>Vihlmier</td>
<td>0.7376 (0.1098)</td>
<td></td>
<td>37.20</td>
<td>2.09 [1.69, 2.59]</td>
</tr>
<tr>
<td>Beydoun</td>
<td>0.0487 (0.0965)</td>
<td></td>
<td>48.17</td>
<td>1.05 [0.87, 1.27]</td>
</tr>
</tbody>
</table>

Total (95% CI)

Test for heterogeneity: Chi² = 24.88, df = 2 (P < 0.00001), I² = 52.0%

Test for overall effect: Z = 4.53 (P < 0.00001)
Results: Obese BMI mid-life increases risk of AD and dementia

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>log[obesity] (SE)</th>
<th>obesity (fixed) 95% CI</th>
<th>Weight %</th>
<th>obesity (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitzpatrick</td>
<td>0.2231 (0.2673)</td>
<td>22.53</td>
<td>1.25 [0.74, 2.11]</td>
<td></td>
</tr>
<tr>
<td>Whitmer</td>
<td>1.1314 (0.1768)</td>
<td>51.50</td>
<td>3.10 [2.19, 4.38]</td>
<td></td>
</tr>
<tr>
<td>Beydloun</td>
<td>0.3074 (0.2490)</td>
<td>25.97</td>
<td>1.36 [0.83, 2.22]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td>100.00</td>
<td>2.04 [1.59, 2.62]</td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity: Chi² = 11.61, df = 2 (P = 0.003), I² = 82.8%
Test for overall effect: Z = 5.62 (P < 0.00001)
Results: BMI in late-life continuous and AD?

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>log[Relative Risk] (SE)</th>
<th>Relative Risk (fixed)</th>
<th>Weight</th>
<th>Relative Risk (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>95% CI</td>
<td></td>
<td>95% CI</td>
</tr>
<tr>
<td>Yoshitake</td>
<td>-0.2876 (0.1647)</td>
<td></td>
<td>0.76</td>
<td>0.75 [0.54, 1.04]</td>
</tr>
<tr>
<td>Borenstein</td>
<td>0.0582 (0.0838)</td>
<td></td>
<td>2.92</td>
<td>1.06 [0.90, 1.25]</td>
</tr>
<tr>
<td>Gustafson</td>
<td>0.2620 (0.0372)</td>
<td></td>
<td>14.84</td>
<td>1.30 [1.21, 1.40]</td>
</tr>
<tr>
<td>Buchman</td>
<td>-0.0576 (0.0197)</td>
<td></td>
<td>52.90</td>
<td>0.94 [0.91, 0.98]</td>
</tr>
<tr>
<td>Luschinger</td>
<td>-0.1053 (0.0268)</td>
<td></td>
<td>28.58</td>
<td>0.90 [0.85, 0.95]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td>100.00</td>
<td>0.98</td>
<td>[0.95, 1.01]</td>
</tr>
</tbody>
</table>

Test for heterogeneity: Chi² = 74.73, df = 4 (P < 0.00001), I² = 94.6%
Test for overall effect: Z = 1.55 (P = 0.12)

Note: Weight loss precedes AD by about 5-6 years
Summary and conclusion of review

- Mid-life low and high BMI are associated with an increased risk of AD and Any dementia in late life. This finding appears relatively robust.
- The mechanism for low BMI may be different than that of high BMI.
- The findings for late-life BMI are not robust because of the short follow-up periods of studies, selection effects in studies of older adults, and lack of co-morbid health data.
Abdominal fat a risk in normal BMI women

Women’s Health Initiative Study
Aged 65-80 (n = 7163)
Examined BMI, waist to hip ratio, 4-5 yrs follow up
Abdominal obesity associated with dementia, even in normal weight women

Figure 1. Hazard ratio for probable dementia with covariate adjustment. *No cases of probable dementia in 41 in this cell. WHR = waist-hip ratio.
Weight loss and cognitive function

Lo et al., 2011, Int. J. Geriatric Psychiatry.
Australian Study: Women aged 40-79 (n = 334), follow up 7.45 years

Mixed results for mid-life weight loss and cognition. No association with change in cognition. Weight loss associated with higher scores on visual memory at follow-up

Inconclusive results → need systematic review
Overall benefit of weight loss found for measures of executive function

Mixed results for memory

Studies had mixed age-range

Assessments mostly taken immediately after weight loss
Dementia prevalence according to obesity

Summary and conclusion

Obesity in young and middle-aged adults will lead to expected increase in dementia rates.

Midlife abdominal obesity and associated inflammation seem most important.

Late-life more complicated results; careful interpretation required.

Population health approaches to obesity epidemic need to acknowledge the long term impacts on dementia, and short term impact on cognitive function.
Acknowledgements

This project has been funded in part by the Dementia Collaborative Research Centre Early Detection and Prevention, Australian National University as part of the Australian Government’s Dementia Initiative.

The views expressed in this work are the views of its author/s and not necessarily those of the Commonwealth of Australia.

Anstey is funded by NHMRC Fellowship # 1002560

Reference