Research Projects

Members of the Computational and Theoretical Neuroscience Laboratory currently work on many diverse research projects.

The following projects are being pursued by laboratory members and collaborators, categorized by broad research area.

New in 2015-2016.

  • Natural Language Processing
  • Deep learning
  • Computer graphics based on models of human visual perception

 

Existing and Past Projects:

1. Computational Neuroscience Modelling

1A. Networks Neuroscience and Neuronal Connectomes

  • What complex network features will be found in the synaptic connectivity of small cortical regions, once their neuronal connectomes are mapped?
  • How does complex network topology (e.g. modular, small-world, scale-free) affect the collective dynamics of neuronal networks?
  • Stochastic pooling networks: Is this kind of network topology, where redundancy and noise are jointly exploited, to be found in the brain and specifically in the cortex?

1B. Stochastic resonance and intrinsic neuronal noise

  • Does stochastic resonance occur in-vivo in neural systems?
  • What is required to build bridges between the idea of "noise benefits" and contemporary neuroscience modelling?
  • At what "level of description" does stochastic resonance relate to neuronal "computation?
  • How does short term plasticity, due to stochastic neurotransmitter release in synaptic communication between neurons, affect neural coding? 

1C. Cortical neuronal oscillations

  • What neuronal mechanisms are required to exist for existing hypotheses regarding communication within the brain to be plausible?
  • Can beta oscillations be reproduced in simulated networks of the  piriform (primary olfactory) cortex?

1D. Auditory nerve

  • Is suprathreshold stochastic resonance exploited in the transduction of sounds into action potentials in primary afferent auditory neurons?
  • Can the high levels of spontaneous action potentials in primary afferent auditory neurons be explained in terms of suprathreshold stochastic resonance?

 


2. Computational theory and modeling of visual surface perception

  • A primary goal of psychology and neuroscience is to understand how sensory and perceptual systems represent information about the outside world. Determining the mathematical form of the representations underlying such systems is known as the representation problem. The central aim of this research project is to describe the mathematical form of the brain representation underlying the visual perception of surface properties, such as lightness, transparency and gloss.


3. Information Theory and Signal Processing with Neuroscience Applications

3A. Biological Signal Processing

  • Optimal electrical patterns for cochlear implants
  • Automatic classification of sleep stages from EEG data
  • Removal of EMG contamination from EEG data

3B. Lossy compression in neural coding

  • What mechanisms exist in the brain for the lossy compression of sensory inputs?
  • What is an appropriate way to measure "distortion" introduced by lossy compression within the brain?


3C. Critical evaluation of the utility of Shannon information theory in neuroscience

  • Under what circumstances are mutual information or channel capacity useful concepts for identifying codes or communication mechanisms in the brain?


3D. Optimal stimulus-response curves and stimulus distributions

  • Can information theoretic quantities be used to predict the shape of empirically produced stimulus-response curves for a known stimulus distribution, or the optimal distribution of stimuli for a known stimulus-response curve?


4. Stochastic Modelling for Engineering Applications

  • FPGA implementation of stochastic neuron models
  • Biologically-inspired analog-to-digital converters and stochastic quantization theory
  • Optimization of sensor networks
  • The two envelope problem with randomized switching
  • Communication using a single photon source

Areas of study and research

+ Click to minimise